SEATPHAGES

Background

Bacteriophages are viruses that infect bacteria. Image 1 depicts a phage's morphology. They are a potential alternative to antibiotics in fighting infections, and their small genome lends themselves well to studying bioinformatics [1]. The Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program provides undergraduates an opportunity for research-based coursework involving bacteriophages [2]. The students isolate a phage and annotate its genome. The purpose of this project is to outline the process of phage genome annotation; gene 24 from "Damp," a phage isolated by the University of Pittsburgh, depicts the process. Damp is a Gordonia phage (i.e., it infects Gordonia bacteria). Genome annotation can serve as an introduction to bioinformatics. Bioinformatics involves storing and interpreting biological data (e.g., nucleotide sequences), which can be used to make functional predictions.

Image 1 – TEM of a bacteriophage. The head contains the DNA, and the tail fibers help bind to the bacteria. Photo: [3]

BACTERIOPHAGE GENOMICS: A TOOL FOR LEARNING BIOINFORMATICS JOSEPH CHRISTIANSEN, BETH WILKES DEPARTMENT OF NATURAL SCIENCES

Auto-annotation programs will misinterpret or fail to call 5-10 genes per bacteriophage genome [4]. Because of this, it is paramount that a review of the auto-annotation (i.e., the manual annotation) occurs.

Part 1: Gene Start Prediction

The manual annotation analyzes outputs from various algorithms to confirm or edit the auto-annotation's chosen gene start. Coding potential, gaps, and ribosomal binding site (RBS) scores are assessed.

e sequence, 72364 bp inc GeneMark hmm pre e sequence, 72364 bp inc	luding 161 bp terminal repeat, diction 161 bp terminal repeat,	Cluster CS3, Order 4, Wi Cluster CS3, Order 2, Wi	indow 96, Step 12, 16/36 indow 96, Step 12, 16/36
, 	· · ·	יוי	,
1 1 1 1 1 1 1 30000	30400 3	0800 31200	
30000	14	0800 31200) 31600
30000			
ىلىم تەركى شار		,	, , ,
L 4 L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30400 3	0800 31200) 31600
		,, , , , , ,,,	· ، ، ، ، ،
30000	30400 3	 0800 31200	
	<u>مىسىمى،، سىم ،</u>		······································
30000 	30400 3 Nucleotide Pos atypical.ps	0800 31200 sition) 31600

Image 3 (right) – Table of gene starts and their gaps and RBS scores (final score column) [6]. A low gap is stronger evidence for a gene start, as phages favor a compact genome. An RBS score relays the strength of a ribosomal binding site for a gene start. Ribosomal binding sites are sequences of DNA responsible for ensuring translational accuracy. A high score is strong evidence for a gene start.

Image 2 (left) – GeneMarkS [5] graph of gene 24 for Damp (Damp_24). The y-axis represents coding potential, the probability that a gene lies at a locus. The x-axis represents the nucleotide position. Gene starts that capture all the coding potential are likely to be the best start for a gene. The graph displays 6 reading frames. A reading frame is the pattern of codons (i.e., triplets of nucleotides) used during translation. The top 3 reading frames are in the forward direction, and the bottom 3 are in the reverse. Red dashed lines represent predictions with an atypical model, and solid lines represent predictions using a typical model; coding potential with the typical model is more robust evidence.

Gene (dida	tes								
Show 10	• entrie	es						Sea	rch:		
Direction 🔺	Start 🍦	Stop 🍦	Length	Gap	Spacer 🍦	Z- score	Final Score	LORF 🔶	Start Codon 🍦	All GM Coding Capacity	Selected Gene
Forward	30212	32743	2532	-4	9	1.606	-5.492	TRUE	GTG	Yes •	
Forward	30374	32743	2370	158	6	2.511	-4.557		GTG		
Forward	30461	32743	2283	245	13	1.137	-6.749		GTG		
Forward	30464	32743	2280	248	9	1.395	-5.935		ATG		
Forward	30539	32743	2205	323	8	1.557	-6.041		GTG		
Forward	30611	32743	2133	395	13	0.93	-7.183		ATG		
Forward	30665	32743	2079	449	8	1.94	-5.235		TTG		
Forward	30698	32743	2046	482	16	1.879	-5.937		TTG		
Forward	30701	32743	2043	485	14	1.012	-7.314		GTG		
Forward	30818	32743	1926	602	7	1.726	-5.986		GTG		

References

1] Abedon, S. T., Kuhl, S. J., Blasdel, B. G., & Kutter, E. M. (2011). Phage treatment of human infections. Bacteriophage, 1(2), 66-85. https://doi.org/10.4161/bact.1.2.15845 [2] SEA-PHAGES. (n.d.). <u>https://seaphages.org/</u>

3] Abdul Wahid, A. (2015). Phage Therapy: Emergence of a Novel Therapy to Control Bacterial Pathogens. Inventi Rapid: Pharm Biotech & Microbio, 1, 1. [4] Poxleitner, M., Pope, W., Jacobs-Sera, D., Sivanathan, V., Graham., H. Phage Discovery Guide. Howard Hughes Medical Institute. (2018) https://seaphagesphagediscoveryguide.helpdocsonline.com/home 5] Besemer, J., Lomsadze, A. and Borodovsky, M. (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Research, Vol. 29, No. 12, 2607-2618 6] Claire A. Rinehart, Bobby Gaffney, James Dexter Wood, Jason Smith. (2016). PECANN, a Phage Evidence Collection and Annotation Network. <u>https://discover.kbrinsgd.org</u> 7] Camacho C, Boratyn GM, Joukov V, Vera Alvarez R, Madden TL. ElasticBLAST: accelerating sequence search via cloud computing. BMC Bioinformatics. 2023 Mar 26;24(1):117. https://doi.org/10.1186/s12859-023-05245-9. PMID: 36967390 [8] Gabler, F., Nam, S.-Z., Till, S., Mirdita, M., Steinegger, M., Söding, J., Lupas, A. N., & Alva, V. (2020). Protein Sequence Analysis Using the MPI Bioinformatics Toolkit. Current Protocols in Bioinformatics, 72(1), e108. https://doi.org/10.1002/cpbi.108

Manual Annotation

Part 2: Protein Function Prediction

After predicting where a gene starts, the gene product (i.e., the protein) can be assessed. This involves matching nucleotide or amino acid sequences against databases.

Image 4 (right) – The NCBI basic local alignment search tool (BLAST) [7] matches a gene's nucleotide sequence against the NCBI database. It may target an entire gene or a portion of one. Matches with known gene products indicate possible protein function. The e-value for each hit represents the probability that an alignment occurred by chance. Therefore, hits with lower e-values are stronger evidence for function.

Nr	Hit 🔶	Name
1	80DZ_D	Interleukin-12 receptor subunit beta- 2,Calmodulin-1; Complex, Cytokine, Receptor, SIGNALING PROTEIN; HET: BMA, NAG, MAN;
2	8G4L_am	Titin; cardiac, myosin, filament, complex, CONTRACTILE PROTEIN;{Homo sapiens}
2 3	4YH7_A	Receptor-type tyrosine-protein phosphatase delta; Trans-synaptic complex, Synapse organizer, HYDROLASE- IMMUNE SYSTEM com

Image 5 – HHpred [8] matches amino acid sequences against protein databanks. It uses a different algorithm than NCBI BLAST. HHpred is important to protein calls, as it may align to wet lab results, which is strong evidence. HHpred also provides the e-value for a particular hit. This query for Damp_24 is matching to a contractile protein, which is evidence for a minor tail functional call.

AST	C Rerun														
arameters us: 3/21/2024	, 10:13:48	3 AM													
):13:37 AM	Shov	w 10	• entries							Search:					_
Accession	n 🔶 Re	egion 🔶	Creation Date	CDS Note	Description	% Identity	% Aligned	% Coverage	Positives	Target From	Target To ∲	Query From	Query To	Gaps	E- value
UVK60263	3 No	D	2022-08- 31	minor tail protein	minor tail protein [Gordonia phage Shelley] >gb[UVK60753.1] minor tail protein [Gordonia phage Bianmat] >gb[UVK62753.1] minor tail protein [Gordonia phage Lidong] >gb[UXE04907.1] minor tail protein [Gordonia phage Jams] >gb[WAA19559.1] minor tail protein [Gordonia phage GalacticEye]	99.7627	99.8814	100	842	1	843	1	843	0	0
YP_00927	73415 No	D	2023-01- 09	minor tail protein	minor tail protein [Gordonia phage Woes] >gb ANA85797.1 minor tail protein [Gordonia phage Woes]	99.5255	99.8814	100	842	1	843	1	843	0	0
UVF60797	7 No	D	2022-08- 27	minor tail protein	minor tail protein [Gordonia phage Sticker17] >gb[UVK61731.1] minor tail protein [Gordonia phage MrWormie]	99.8814	100	100	843	1	843	1	843	0	0
ATW61120	0 No	0	2020-11-18	minor tail	minor tail protein [Gordonia phage	99.6441	99.8814	100	842	1	843	1	843	0	0
♦	Prob	abil	lity ^{\$}	E	-value	S	core	S	s 🔶	cols	icu -	\$	Leng	gth	\$
	99.75	5		5.	.6e-14	10	68.57	4	4.9	501			769		
	99.68	8		2.	.2e-12	10	61.64	4	7.6	316			1084	Ļ	
9	99.60	6		50	e-12	1	54.12	4	6.4	386			841		

Acknowledgements
Special thanks to: Professor Beth Wilkes for advice on genome annotation & project feedback. Professors Tracey Lesser and Jennifer Eggers for project feedback. Classmates for project feedback.